Stress response and structural transitions in sheared gyroidal and lamellar amphiphilic mesophases: Lattice-Boltzmann simulations.
نویسندگان
چکیده
We report on the stress response of gyroidal and lamellar amphiphilic mesophases to steady shear simulated using a bottom-up lattice-Boltzmann model for amphiphilic fluids and sliding periodic (Lees-Edwards) boundary conditions. We study the gyroid per se (above the sponge-gyroid transition, of high crystallinity) and the molten gyroid (within such a transition, of shorter-range order). We find that both mesophases exhibit shear thinning, more pronounced and at lower strain rates for the molten gyroid. At late times after the onset of shear, the skeleton of the crystalline gyroid becomes a structure of interconnected irregular tubes and toroidal rings, mostly oriented along the velocity ramp imposed by the shear, in contradistinction with free-energy Langevin-diffusion studies which yield a much simpler structure of disentangled tubes. We also compare the shear stress and deformation of lamellar mesophases with and without amphiphile when subjected to the same shear flow applied normal to the lamellae. We find that the presence of amphiphile allows (a) the shear stress at late times to be higher than in the case without amphiphile, and (b) the formation of rich patterns on the sheared interface, characterized by alternating regions of high and low curvature.
منابع مشابه
Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions.
We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three-dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinuous microemulsion. We demonstrate that the maximum domain size and the tim...
متن کاملLattice Boltzmann Simulation of Deformation and Breakup of a Droplet under Gravity Force Using Interparticle Potential Model
Abstract In this paper interparticle potential model of the lattice Boltzmann method (LBM) is used to simulate deformation and breakup of a falling droplet under gravity force. First this model is applied to ensure that the surface tension effect is properly implemented in this model. Two tests have been considered. First, it has been checked an initial square drop in a 2D domain can freely def...
متن کاملEmergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases
– We use a lattice Boltzmann (LB) kinetic scheme for modelling amphiphilic fluids that correctly predicts rheological effects in flow. No macroscopic parameters are included in the model. Instead, three-dimensional hydrodynamic and rheological effects are emergent from the underlying particulate conservation laws and interactions. We report evidence of shear thinning and viscoelastic flow for a...
متن کاملLattice Boltzmann simulations of microemulsions and binary immiscible fluids under shear
Large scale lattice Boltzmann simulations are utilized to investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear. We use a highly scalable parallel Fortran 90 code for the implementation of the simulation method and demonstrate that adding surfactant to a system of immiscible fluid constituents can change the mixture’s ...
متن کاملSelf-assembly in block polyelectrolytes.
The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 73 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2006